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The strength of hybrid glass/carbon 
fibre composites 
Part 2 A statistical mode/ 

P, W. MANDERS, M. G. BADER 
Department of Metallurgy and Materials Technology, University of Surrey, Guildford, UK 

When carbon fibre is combined with less-stiff higher-elongation glass fibre in a hybrid 
composite an enhancement of the failure strain of the carbon fibre reinforced phase is 
observed. This "hybrid effect" is only partially accounted for by internal compressive 
strains induceclby differential thermal contraction during fabrication. The predominant 
factor is shown to be a relationship between the strength and effective bundle size of the 
carbon fibre ligaments which is a consequence of the statistical distribution of strength- 
reducing flaws in the carbon fibres. A lamina or ligament (bundle) of carbon fibres fails 
when there is a local critical accumulation of fibre fractures. A model based on this 
concept is used to relate the two-parameter Weibull strength distribution of the carbon 
fibre reinforced composite phase to that of single carbon fibres. The model suggests that 
the critical number of fibre fractures is of the order of 3, and experimental observations 
of the failure process support this hypothesis. 

Nomenclature 
CFP carbon fibre reinforced phase. 
cfrp carbon fibre reinforced plastic. 
grp glass fibre reinforced plastic. 
F gamma function. 
o stress. 
P probability. 
w Weibull shape parameter. 
o0 Weibull scale parameter. 
L length. 

m number of links in a chain of bundles. 
n number of fibres in a bundle. 
i number of fibre fractures in a group which 

leads to catastrophic fracture. 
Subscripts 
f failure. 
s survival. 
m chain of rn links. 
n bundle of n fibres. 
L links of  length L. 

1. Introduction 
In a previous paper [1] we described the mech- 
anical properties and macroscopic aspects of the 
failure of a range of glass/carbon fibre epoxy 
hybrid composites. In this paper we present obser- 
vations of the micromechanisms of failure and 
relate these to a model of composite failure based 
on the  statistics of fibre fracture. The major find- 
ing of the previous work is that the failure strain 
of the carbon fibre reinforced phase (CFP) of 
the hybrid is not constant, but depends on the 
geometrical distribution of the two types of  
reinforcing fibre. As a general rule, the apparent 

failure strain of the CFP increases as the discrete 
ligaments of  CFP are reduced in size, and as the 
ratio of glass to carbon fibre is increased. Part of 
this failure strain increase can be accounted for by 
differential thermal contractions which resulted in 
a compression of the CFP when the composites 
were cooled after curing. However, the remainder 
of the increase, and its variation with the size of 
the CFP (at constant ratio of glass to carbon fibre), 
are unexplained. It is the purpose of this paper to 
show how a statistical model of failure can account 
for that part of the hybrid effect which is not 
of thermal origin. In addition we relate the 
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strength of the CFP in the hybrids to the strength 
distribution of single carbon fibres tested in 
isolation. 

First we discuss fracture mechanical (thermo- 
dynamic) and micromechanical (statistical) 
approaches to understanding the failure of a 
composite containing a single type of fibre, and 
suggest two ways in which combining fibre types 
might lead to an enhancement of the failure strain 
of the lower elongation fibre. 

The fracture mechanics approach is essentially 
concerned with the strength of a flawed structure 
which fails by propagation of  a pre-existing crack 
when conditions at the crack tip become thermo- 
dynamically favourable. Application to fibre 
reinforced composites in the case of fracture per- 
pendicular to the fibres is complicated by the fact 
that the material is both structurally inhomo- 
geneous and anisotropic in its elastic and fracture 
properties. Although both the matrix and fibre are 
brittle solids, typical fractures do not involve a 
single crack with smooth surfaces, but rather a 
microscopically tortuous fracture path with 
matrix cracks linking fibre fractures, often also 
with debonding between fibre and matrix, (Figs 
1 and 2) often extending several fibre diameters on 
either side of a fibre fracture. If fracture mechanics 
are to have a valid application at the macroscopic 
level, the crack-tip zone should be sufficiently 
large for the material there to behave in an effec- 
tively homogeneous manner, which means that the 
crack should be very large in comparison with the 
fibre diameter. This effectively precludes the use 
of fracture mechanics to explain the intrinsic 
strength of cfrp at the macroscopic level, because, 
as fabricated, composites do not contain cracks of 
such a size. 

Typically cfrp can be expected to contain a 
range of stress-concentrating defects, associated 
with the fibres themselves (e.g. weak points caused 
by inclusions, porosity and surface features [2]), 
or introduced during composite fabrication, 
(e.g. broken fibres, misaligned bundles and uneven 
distribution of fibre [3]). In a well-made com- 
posite fabrication defects are of secondary 
importance to the fibre defects which precipitate 
the failure of individual fibres as the composite is 
loaded. Conceptually there is no bar to applying 
fracture mechanics analysis to the fibre defects, 
taking into account the microstructural inhomo- 
geneity. Typically the first failure of a fibre does 
not lead to ultimate failure of the composite 

because the weak fibre-matrix interface arrests 
the crack by debonding. However, there is a local 
stress perturbation around a fibre fracture which 
leads to a stress intensification in neighbouring 
fibres so that they will tend to fail at lower levels 
of applied stress. Continued propagation of a crack 
beyond the first failure of a fibre is a statistical 
problem involving the distribution of weakness in 
the adjacent fibres. 

Statistical theories of composite i'ailure, e.g. 
[4-15],  generally assume that all fibres in a com- 
posite are nominally identical, and initially 
uniformly stressed, so that a fibre will fail at its 
weakest point by propagation of a flaw when a 
critical value of stress is reached. Fibres of a given 
length will exhibit a scatter of strengths on account 
of the random distribution of strength-limiting 
flaws, and their median strength will decrease with 
increasing length as each fibre will have a greater 
probability of containing a flaw of a given severity. 
The Weibult distribution is a reasonable description 
of the strength distribution of single fibres tested 
in isolation (e.g. Fig. 3) and is commonly adopted 
for its mathematical convenience. The models in 
references [4-15] consider a composite to consist 
of a chain of bundles of fibres (Fig, 4)  and relate 
the strength distribution of the fibre to that of a 
short bundle. It is then a simple matter to obtain 
the strength distribution of the composite as a 
chain of such bundles. A key feature of many 
statistical models is that the median strength of 
a composite decreases as its bulk size is increased, 
by increasing the length or cross-section (number 
of fibres), since in the greater volume of material 
there is a higher probability of a catastrophic 
sequence of fibre fractures, leading to ultimate 
failure, at any given applied stress. 

The thermodynamics (fracture mechanical) and 
statistical approaches to composite strength are 
compatible because fracture mechanics considers 
either a very large crack with a large damage zone 
at its tip in which statistical effects are insignificant, 
or is applied at the microscope level where statisti- 
cal variations between fibres dominate. Statistical 
models adopt experimentally determined distri- 
butions for fibre strength in which thermodynamic 
conditions for fibre fracture are obviously met. 
(The matrix is assumed to have negligible strength 
in the fibre direction.) However, it should be 
noted that these distributions are usually deter- 
mined for isolated fibres, whereas in a composite, 
fibre flaws are elastically coupled via the matrix to 
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Figure 1 Photomicrographs of the carbon fibre layer of a spread-tow hybrid strained to 0.02, taken in polarized light to 
show up the debonding between fibre and matrix (lighter areas). (a) Large group of carbon fibre fractures; (b) intermedi- 
ate group of carbon fibre fractures; (c) isolated carbon fibre fractures; (d) a pair of adjacent fibre fractures, only one of 
which is debonded. 
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Figure 2 Section of the carbon fibre layer in a spread-tow 
hybrid strained to 0.02. 

adjacent (stiff) fibres, and may therefore propogate 
at different applied stresses. 

It is easy to see how a hybrid effect can exist 
on a statistical model. The smaller the volume of 
cfrp in a discrete ligament, the higher will be its 
failure strain, and so long as the glass fibre is 
effective in preventing the propagation of fractures 
from bundle to bundle, the cfrp in a hybrid will 
exhibit a greater average failure strain than a 
similar volume in an all cfrp composite. 

In a fracture mechanics model a hybrid effect 
can arise as follows. When a composite is stressed 
fibre fractures occur, initially at random, but later 
preferentially in the overstressed zones surround- 
ing previous fibre fractures. Ultimately a group of 
fractures reaches a critical size and catastrophic 
crack propagation occurs. Although this group of 
fibre fractures may be too small for rigorous 
application of fracture mechanics, the principles 
remain the same. Thus, as the applied stress is 
increased the inherent flaw size (i.e. groups of 
failed fibres) increases, whilst the critical flaw size 
will decrease as a consequence of the increased 
strain energy density [8, 9]. Consider now a defect 
shown as a "crack" in an all-carbon fibre ligament, 
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Fig. 5a. It will propagate at some critical applied 
stress (or strain). If, however, the same ligament 
containing the same crack were part of a hybrid, 
shown in Fig. 5b, the crack would be bridged by 
glass fibres. This would reduce the rate of strain 
energy release as the crack grew and a higher 
applied stress (or strain) would be required to 
propagate the crack in the ligament. This concept 
will be termed "constraint". 

Both of these models for the hybrid effect are 
based on the assumption that the glass fibre phase 
does not fail. The practical requirement for the 
realization of this condition is that no significant 
number of glass fibres should fail in the region of 
stress intensification close to fractures in the CFP. 
In the early stages of failure this requirement is 
easily met, since the failure strain of the glass 
fibre is more than twice that of the carbon. How- 
ever, as the CFP fails, load is redistributed onto 
the glass fibre, until it also fractures. The range of 
strain between the onset of CFP failure and of 
ultimate failure depends on the relative volumes 
and moduli of the two phases. 

In the present work we have attempted to 
explain the hybrid effect on the basis of the 
statistical strength of the carbon fibres. Experi- 
mental data have been gathered from a series of 
tests in model hybrid composites, in which the 
carbon fibre ligament size has been systematically 
varied. This work is described in Part 1 [1] of this 
paper. The dependence of the probability of 
ligament failure on size and strain has been deter- 
mined, and further evidence in support of the 
proposed model of failure has been gathered from 
an extensive programme of microscopy. 

2. Discussion 
2.1. Strength of single fibres 
Later discussion of the strength of cfrp will involve 
the strength distribution of single carbon fibres of  

.:'Y 
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Figure 3 Strength distributions for HTS 
carbon fibres of two gauge lengths with 
fitted WeibuU functions. 
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Figure 4 Chain-of-bundles model of a unidirectional fibre 
composite. 

the order of 100#m in length. It is impractical to 
measure the strength of such lengths directly with- 
out specialized equipment. However, the strength 
distribution was measured at 50 and 10 mm, and 
was found to approximate to a Weibull distribution 
which allowed extrapolation to predict the strength 
at shorter gauge lengths. Fifty HTS carbon fibres 
(from the same production batch as used for the 
spread-tow and divided-tow hybrids) were selected 
from all parts of the tow and tested to failure. The 
diameter of each fibre was measured by laser dif- 
fraction to within "~ 2%. The failure stresses were 

Figure 5 The principle of "constraint" in hybrid laminates: 
(a) unconstrained crack; (b) crack in one ply constrained 
by uncracked adjacent plies. 
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plotted as cumulative probability distributions, 
Fig. 3, and were fitted to a two-parameter Weibull 
distribution 

Pf = 1--exp[--L(~ (1) 
~Oo! 1 

The Weibull scale and shape parameters were found 
to be % = 2.17 GPa and w = 6.98, respectively. 

2.2. "Weakest link" aspect of fibre strength 
In the introduction it was argued that a composite 
would show a size effect in its strength if ultimate 
failure was determined by some sequence of events 
whose probability of  occurrence at a given stress 
depended on the volume of material stressed. In a 
single fibre it is easily seen how such behaviour 
arises. Consider a length of fibre L whose strength 
distribution is given by Equation 1. I f  m such 
lengths are chained together to give a fibre mL 
long, its strength will be determined by the 
weakest length in the chain. The probability of 
survival of the chain is the product of the probabil- 
ities of survival of each constituent length. 

esmL = (~sD m. (2) 
Also 

e~ = 1- -es ,  (3) 

so, from Equation 1, 

( (;;l PfmL = 1 - - e x p  - -mL . (4) 

Note that in Equation 4 the strength decreases 
with increasing length, but the parameter w which 
is an inverse measure of the spread in strengths 
remains the same (Equation 6). Coleman [4] con- 
siders in detail the variation of fibre strength with 
length using the Weibull distribution. The median 
strength is given when P f = P s = 0 . 5 .  Mean 
strength is given by 

and the coefficient of variation by 

Iv2(1 + 1/w) 1 (6) 

(see Coleman [4]). 
Size-dependent behaviour of the strength of a 

single fibre is conveniently displayed in a graph of 
In o against in L, (at constant probability of failure). 
From Equation 1 this is seen to  be linear with 
grad ien t -  1/w. 



Thus plotting In(median strength) against 
In (length) gives a straight line with gradient of 
--1/w. Similarly, plotting In (mean strength) 
against in (length) also gives a line of gradient 
- 1 / w  from Equation 5. Use of a Weibull probabil- 
ity plot in this way is described by Harlow and 
Phoenix [ 15 ]. We use the log (strength) against log 
(length) plot as a test ofWeibull behaviour. 

2.3. The "chain of bundles" model for the 
strength of a composite 

In a composite conceived as a chain of m bundles 
each of n fibres in parallel, see Fig. 4, ultimate fail- 
ure occurs at the first failure of a bundle. An 
equation analogous to Equation 4 may be written 
for the strength distribution of the composite 
in terms of the strength distribution of a bundle. 
For a given size of bundle, say n fibres, we expect 
weakest-link behaviour with a shape parameter wn. 
However, such an equation does not relate the 
strength distribution of the composite to that of a 
single fibre. Indeed, relating the strength distri- 
bution of a bundle of n fibres to that of a single 
fibre is a complex problem whose rigorous solution 
has met with only partial success. Harlow and 
Phoenix [15] review various approaches to the 
problem. The complexity arises as follows: To 
calculate the probability of failure of a bundle at 
any given applied stress, it is necessary to deter- 
mine all possible sequences of fibre fractures which 
lead to failure. The probabilities of each sequence 
occurring at a given stress are summed to give the 
probability of failure of the bundle, The probabil- 
ities of each failure sequence must be expressed in 
terms of fibre failure probabilities, taking into 
account the complex geometry and redistribution 
of load which occurs when a fibre fails. 

The "chain-of-bundles" model of failure in a 
composite has been considered in [5-15]. These 
approaches differ chiefly in the assumptions made 
about the redistribution of load at fractures and in 
the failure criteria adopted. Of particular relevance 
here are the approaches of Zweben and Rosen 
[6-11] and Harlow and Phoenix [15 ] who examine 
the case where load formerly carried by a broken 
fibre is concentrated on a small number of adjacent 
fibres. Harlow and Pheonix [ 15 ] adopt a local load 
sharing rule which considers only nearest neigh- 
bours, whereas Zweben and Rosen [6-11] con- 
sider more distant fibres. The load is generally 
assumed to be evenly distributed over some 

"ineffective length" of these fibres, though this 
is most unlikely to be the case in reality. Three 
failure criteria are of particular interest: Giicer and 
Gurland [5] adopt a first-fibre fracture criterion 
which we discuss below, while Zweben and Rosen 
[6-11] adopt first failure of an overstressed fibre. 
Harlow and Phoenix [15] consider all sequences of 
fibre failures (for a composite of small size < 9 
fibres). More recently Batdorf [16], Smith [26], 
and Harlow and Phoenix [27] have considered the 
critical size of a group of fibre fractures. In all 
cases the critical number of adjacent fibre fractures 
is small, of the order of 3, which agrees well with 
our experimental observations. These analyses 
explicitly relate w for a fibre to wn for a bundle. 

2.4. Weakest link aspects of composite 
strength 

The simplest failure criterion for a bundle of n 
fibres bonded together is that the first fibre failure 
propagates through all the fibres. In this case a 
fibre fracture constitutes a "weakest link" in the 
structure and an expression analogous to Equation 
4 can be written 

P f n = l - e x p [  - n (a--lw ] \ O o ]  (7) 

for a bundle of n fibres and unit length, L. 
Similarly for a chain of m bundles of n fibres 

[ ] Pfmn = 1 --exp --ran . (8) 

Equation 8 plots as a straight line of gradient 
- -  1 / w ;  the same as for single fibres, in a graph of 
in (strength against In (size), see Fig. 6, where 
composite size is measured in terms of the t o t a l  

length of fibre, ( ran)  i.e. a measure of v o l u m e .  This 
is not surprising, since it is the same event which 
causes failure in both single fibre and composite. 

Our experimental observations indicate that the 
first failure of a carbon fibre does not result in 
complete failure of the bundles but that failure of  
of small group of i fibres does, see the Appendix. 
For a large bundle of fibres (n >> i) it is reasonable 
to adopt failure of i adjacent fibres as a valid 
failure criterion. This assumption avoids the 
necessity of calculating all failure sequences, and 
Harlow and Phoenix [15] whose computed model 
has done this. argue that over a fairly wide range 
of composite size, when n is large, failure has 
weakest-link characteristics, (evidenced by a rela- 
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tively, straight portion of their In (strength) against 
in (size) graph). 

Batdorf [16], Smith [26] and Harlow and 
Phoenix [27] show that the dependence of the 
probability of  failure of the composite on stress is 
to the power i w ,  whereas it is w in the case of a 
single fibre, or fracture of a composite following 
the first fibre fracture. 

Harlow and Phoenix [15] give an example based 
on their predictions in which w n for a realistic 
composite is about 4.5 times that of a single fibre 
( w  = 5 ,  m n  "~ 106). This indicates that a critical 
group of 4 to 5 fibre fractures would be required 
for catastrophic failure. 

2.5. Weibull behaviour of hybr id 
composites 

To test whether the cfrp is hybrid composites 
exhibits "weakest link" type behaviour its strength 
was plotted against the volume of fibre on the 
logarithmic axes of Fig. 6. Gradients of the lines 
for cfrp and single fibres were compared to give an 
indication of the value of i. 

In the case of the all-carbon and laminated 
hybrids this was simply accomplished by plotting 
the nominal fibre failure stress (calculated from 
the cfrp failure strain after correction for residual 
thermal strain) against the total volume of carbon 
fibre in the CFP. The single fibre results were 
plotted in a similar manner. 

However, the divided-tow results were manipu- 
lated in the manner described in Part 1 [1] to 
allow for the volume of material relieved of stress 
by debonding at each fracture of the carbon 
ligament. 

2.0 

"-- ". "~ COMPOSITES 

~ q~ ~ DT Series 

~ Laminates �9 \ 
2~ o 
';- 1.0 "-.. 

Single Fibres 

0.5 
- io -25 -2o -I ;  -16 

I n  V o L u m e  ( rn  - 3  ) 

Figure 6 Relationship between mean strength of the car- 
bon fNre ligament and its total volume of f~re (HTS 
f~re). The failure stresses have been adjusted for residual 
thermal stresses. 
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The mean fibre stress at each successive crack 
was plotted against the "true" mean volume of 
material under test, for bundles of 10000, 3620, 
1620 and 620 fibres, as the solid curves in Fig. 6. 

A straight line may be drawn through all the 
composite data in Fig. 6, which it should be noted, 
span a range of > 1000 in volume. Over this 
volume range the strength against size behaviour is 
consistent with a Weibull statistical model of fail- 
ure. The gradient of this line is -- 0.043, showing a 
much smaller decrease in strength with volume 
than is the case with single fibres where the gradi- 
ent is --0.145. These gradients indicate Weibull 
shape parameters of "~ 7 and 23 for single fibres 
and the CFP respectively, from which we deduce 
that i is ~ 3 fibres. This is consistent both with 
experimental observations and the model devel- 
oped by Harlow and Phoenix [15]. 

A fracture mechanics approach is not appro- 
priate when a crack involves such a small number 
of fibres since its behaviour is dominated by the 
local microstructure. However, this does not mean 
that energetic aspects of  fracture are unimportant. 
Aveston and Sillwood [17] estimated the failure 
strain of a single carbon fibre when it is embedded 
in grp. Their model equated the strain energy 
released from the fibre and surrounding matrix 
material (assumed to have the average properties 
of grp) when the carbon fibre failed, to the energy 
required to create the new fracture surfaces. This 
gave a thermodynamic lower bound for the failure 
strain of the fibres, which is higher when the fibre 
is "constrained" by relatively high modulus 
material (grp) than when the fibre is tested in 
isolation. Their estimated failure strains (for the 
two cases where the fibre remains bonded to the 
matrix, and where it debonds) are close to those 
they observed in a hybrid similar to the spread-tow 
hybrid discussed in Part 1 [1 ]. This suggests that 
fracture energetics could be a significant factor in 
determining the failure strain of fibres in a com- 
posite. Unfortunately they did not compare the 
strengths of  the fibres in the hybrid, with those 
of fibres tested alone. 

Bader and Manders [18] applied a similar 
energy balance equation to the laminated hybrids 
and again showed that the energy release is very 
similar to the energy requirement of the fracture 
surfaces. The implications of  these results for the 
application of a statistical model of composite 
strength to hybrids are: 

(1) The distribution of fibre strength deter- 



mined by single fibre tests may not be applicable 
when they are incorporated into a composite since 
they are effectively "constrained" by adjacent 
material. 

(2) The size of a critical group of fibre fractures 
may depend on both the number of fibres in the 
bundle, and on the stiffness of the material 
surrounding (and constraining) the bundle. 

3. Implications of "weakest link" type 
failure for the design of hybrid 
composites 

3.1. Failure strain enhancement of cfrp 
The most obvious consequence of "weakest link" 
type failure in cfrp is that it allows us to increase 
the effective strength of the carbon fibre simply 
by reducing the number of fibres in each bundle. 
Consider two unidirectional hybrid composites of 
similar dimensions, in which bundles of carbon 
fibre are separated by glass fibre. Hybrid A con- 
tains tows of 104 carbon fibres effectively isolated 
from each other by the grp while hybrid B contains 
bundles of only 10 carbon fibres similarly isolated. 
The Weibull shape parameter for the cfrp is 20 
(a typical value for the type of material studied 
here). If  the median strength of the 10 4 fibre 
bundles is say 1 GPa, the median strength of the 
bundles of 10 fibres (of the same length) will be 
1.41 GPa, an increase of over 40%. The smaller 
bundles continue to contribute stiffness to the 
hybrid at much higher strains. The median 
strength of bundles of intermediate size is shown 
graphically in Fig. 7. 
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Figure 7 Relationship between median strength and 
bundle size for a hypothetical fibre composite with 
Wel"butl shape parameter of 20. 

3.2. Load-strain behaviour 
Further benefits ensue from this redution in 
bundle size. The fractures of the cfrp are smaller 
and more evenly distributed throughout the com- 
posite, and the smaller delaminations between cfrp 
and grp will be less detrimental to the interlaminar 
shear strength. In addition the loss of load bearing 
capacity of the cfrp occurs as a large number of 
smaller events leading to a more gradual loss of 
modulus (at higher strains). The volume of cfrp 
which effectively ceases to bear load at each 
fracture depends on the debonding between the 
cfrp and grp and is a function of both the geometry 
(bundle size) and matrix strength. 

3.3. What  is the  o p t i m u m  state  
of  dispersion? 

If a cross-section of a bundle of n fibres contains a 
critical group of i fibre fractures, all fibres on that 
cross-section fail. The number of fibres which are 
caused to fail, and would not otherwise fail is 
n -  i, and to achieve optimum utilization of the 
fibre this number should be as small as possible. 

When n >> i, reduction of n by a given factor 
increases the median strength by a (different) con- 
stant factor. This is a consequence of the approxi- 
mately linear relationship between In (strength) 
and in (volume). In the example given in Section 
3.1, reducing the bundle size by a factor of 2 
increases the median strength by a factor of 1.035 
(or 3.5%). 

When n is close to or less than i reduction of 
the bundle size is less effective since the failure 
mode will no longer be by catastrophic propagation 
of a brittle crack. However, a marginal increase in 
strength can be expected from the effective 
reduction of overstresses around fibre fractures. 

3.4. What is the optimum choice of fibres 
and their ratio? 

Strength enhancement of the low-elongation fibre 
by reducing its bundle size relies on the effective 
isolation of these bundles by the higher elongation 
fibre which acts as a crack-arrest barrier. Thus, the 
strength distributions of the two fibres must be 
well separated for there to be negligible probability 
of a low-elongation fibre fracture causing failure of 
a high-elongation fibre, or vice versa, the necessary 
separation of scale parameters (ao) will depend on 
the shape parameters w, and also on the overstress 
on fibres near fibre fractures. The overstress 
depends in turn on the matrix and fibre strength 
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and modulus [19-22] and also dynamic factors 
[19]. Practically, carbon/glass, and carbon/Kevlar, 
combinations where the failure strains differ by a 
factor of about 3, are effective. 

The ratio of low-elongation to high-elongation 
fibres is a major factor determining the shape of 
the load-strain curve since it governs the amount 
by which the hybrid extends when a bundle of 
low-elongation fibres fails. It also governs the 
partition of residual thermal strain between the 
high- and low-elongation phases. To obtain any 
benefit from a reduction of the low-elongation 
bundle size there must be enough high-elongation 
fibre present to ensure the mode of failure is by 
isolated fractures of fibre bundles. As long as this 
condition is satisfied the fibre ratio may be chosen 
to give the desired modulus, ultimate strength and 
rate of modulus decrease as the low-elongation 
fibre fails. 

Many factors determine whether or not a frac- 
ture will propagate from (low-elongation) bundle 
to bundle, among them the ratio of fibre types, 
and the geometry of the bundles. Prediction of the 
strength of such an array is essentially the same 
problem as the array of fibres which we have con- 
sidered here. Zweben [23] discusses hybrids in 
which fracture propagates readily between bundles, 
but in our experience the ultimate failure of glass- 
carbon hybrids involves multiple shear cracks in 
the fibre direction, and the composite would 
normally be considered unserviceable at an earlier 
stage of failure. Although the behaviour of arrays 
of bundles and fibres may be similar, different 
criteria of failure may apply to each. 
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Appendix 
Optical microscopy of fibre failures 
Two novel techniques were developed for the 
observation of fibre fractures in the hybrid com- 
posites described in Part 1 [1]. Carbon fibre frac- 
tures were observed directly through the outer 
plies of grp by using a low-power oil-immersion 
objective and top illumination [24]. Polarized light 
greatly increased the contrast since carbon fibre 
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surfaces are optically anisotropic, and with correct 
orientation will give a bright reflection, as seen in 
Fig. 1 (the streaks are due to surface fluting of 
the fibre). A further advantage of this technique is 
that it distinguishes areas of debonding between 
fibre and matrix where there is increased reflection. 
Fibre fractures are seen as fine dark lines across 
the fibres, and there is frequently deb0nding either 
side for several fibre diameters. Fig. 1 is a series of 
micrographs of a spread-tow [1] hybrid strained to 
0.02 showing (a) a large group of fractures (b) sev- 
eral medium sized groups (3 to 10 fibres) and 
(c) isolated single fractures. Fibre fractures are not 
always accompanied by debonding and Fig. l d 
illustrates this with two adjacent fractures, only 
one of which has debonding. This spread-tow 
hybrid was also sectioned and polished in the con- 
ventional manner at a small angle (~ 15 ~ to the 
fibre direction. Fig. 2 is a micrograph of a large 
group of fibre fractures in such a section. Fibre 
fractures are seen as dark lines across the fibres 
where the fibre is retained in the matrix on each 
side of the fracture. However, because of the 
oblique angle of section, some fibres rise out of 
the surface, and where they have debonded from 
the matrix they are lost from the surface during 
polishing. In this case the fibre fracture is indicated 
by a square, as opposed to elliptical profile at the 
end of the fibre. 

Because it relies on the transparency of the grp 
plies in a hybrid specimen, the through-surface 
microscopy could only be usefully applied to 
spread-tow hybrids. For this reason a second tech- 
nique was developed which examined transverse 
sections of composite. Electrolytic etching was 
used to decorate the ends of conducting carbon 
fibres in a thin polished slice of composite. The 
technique is fully described by Manders [25]. 
A ~ 3 mm thick slice is bonded to an anode block 
with conducting cement and its other polished 

I Anode + I Carbon Cathode 

l H2SO 4 k_~ J 

Figure A1 The method of e|ectrolytically decorating con- 
ducting fibres in sections of composite. 



Figure A2 Electrolytically decorated section of a carbon 
fibre composite strained to failure (0.013) showing a 
single non-conducting fibre (bright, and arrowed). 

surface is etched in H2SO 4 to develop colouration 
on the ends of  fibres which are electrically con- 
nected to the anode. The colouration is due to the 
formation of  a graphite intercalation compound 
(graphite bisulphate) and provides good contrast 
with the unconnected fibres which retain their 
bright polish, see Fig. A1. Because the fibres are 
misaligned, there are conduction paths between 
fibres, and fractures some distance from the 
surface are electrically bridged and cannot be 
detected. In practice, at 0.6 volume fraction, 

fractures in the top 100/~m or so effectively 
isolate the fibre ends [24]. 

When applied to all-carbon fibre composites, 
the technique shows that a composite strained to 
failure has very few fibre fractures, see Fig. A2, and 
these are single fractures, indicating a critical 
group size of two fibres. Analysis of  a number of  
such micropgraphs suggests a maximum density of  
fibre fractures of  the order of  101~ m -3. This corre- 
sponds to about one every 4 m on a single fibre, 
although some were certainly introduced at the 
fabrication stage or earlier. The total number 
detected is too small to accurately determine the 
rate of  fibre fracture with straining. A better 
measure of  this is acoustic emission which was dis- 
cussed in Part 1 [1]. 

In hybrid composites, where the ligaments of  
cfrp are smaller, and where multiple cracking is 
possible, much higher strains may be sustained 
before ultimate failure of  the composite, and there 
is a significant increase in the density of  fibre 
fractures. Fig. A3 shows two decorated cross- 
sections of  spread-tow hybrids which have been 
taken to successively higher strains. The rapid 
increase in the number of  fractures with strain, 
and their tendency to be grouped is clearly seen. 
At low strains individual fractures, and groups of  

Figure A3 Electrolytically decorated sections of spread-tow hybrids strained to (a) 0.020 and (b) 0.023. Unbroken car- 
bon fibres appear black, broken fibres white, and glass fibres grey. 
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2 or 3 predominate, whereas at higher strains the 
groups are larger, and ultimately are limited by the 
size o f  the groups which const i tu te  the layer o f  

fibres (because o f  uneven distr ibution).  

Overall, these observations validate a mode l  o f  

fracture in which individual fractures o f  carbon 

fibres cause overstress in neighbouring fibres over 

some distance approximat ing to the length o f  

debonding  be tween  fibre and matr ix.  Fracture  

then propagates fibre-by-fibre unti l  a critical 

group o f  about  2 to 3 fibre fractures is reached, 

when it becomes  catastrophic.  
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